The Second Dialog State Tracking Challenge
نویسندگان
چکیده
A spoken dialog system, while communicating with a user, must keep track of what the user wants from the system at each step. This process, termed dialog state tracking, is essential for a successful dialog system as it directly informs the system’s actions. The first Dialog State Tracking Challenge allowed for evaluation of different dialog state tracking techniques, providing common testbeds and evaluation suites. This paper presents a second challenge, which continues this tradition and introduces some additional features – a new domain, changing user goals and a richer dialog state. The challenge received 31 entries from 9 research groups. The results suggest that while large improvements on a competitive baseline are possible, trackers are still prone to degradation in mismatched conditions. An investigation into ensemble learning demonstrates the most accurate tracking can be achieved by combining multiple trackers.
منابع مشابه
Web-style ranking and SLU combination for dialog state tracking
In spoken dialog systems, statistical state tracking aims to improve robustness to speech recognition errors by tracking a posterior distribution over hidden dialog states. This paper introduces two novel methods for this task. First, we explain how state tracking is structurally similar to web-style ranking, enabling mature, powerful ranking algorithms to be applied. Second, we show how to use...
متن کاملExtrinsic Evaluation of Dialog State Tracking and Predictive Metrics for Dialog Policy Optimization
During the recent Dialog State Tracking Challenge (DSTC), a fundamental question was raised: “Would better performance in dialog state tracking translate to better performance of the optimized policy by reinforcement learning?” Also, during the challenge system evaluation, another nontrivial question arose: “Which evaluation metric and schedule would best predict improvement in overall dialog p...
متن کاملIntroduction to the Special Issue on Dialogue State Tracking
In the core of most task-oriented conversation systems is a component called a dialog state tracker, which estimates the user’s goal given all of the dialog history so far. For example, in a weather information system, the dialog state might indicate the location the user is interested in (Seattle, London, Beijing), and for which date (today, tomorrow, this Saturday). Dialog state tracking is d...
متن کاملThe SJTU System for Dialog State Tracking Challenge 2
Dialog state tracking challenge provides a common testbed for state tracking algorithms. This paper describes the SJTU system submitted to the second Dialogue State Tracking Challenge in detail. In the system, a statistical semantic parser is used to generate refined semantic hypotheses. A large number of features are then derived based on the semantic hypotheses and the dialogue log informatio...
متن کاملEncoding Word Confusion Networks with Recurrent Neural Networks for Dialog State Tracking
This paper presents our novel method to encode word confusion networks, which can represent a rich hypothesis space of automatic speech recognition systems, via recurrent neural networks. We demonstrate the utility of our approach for the task of dialog state tracking in spoken dialog systems that relies on automatic speech recognition output. Encoding confusion networks outperforms encoding th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014